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Context: linkage disequilibrium in GWAS



Genome-Wide Association Studies

= Goal: identify genetic markers (SNP) associated with a
phenotype (disease) of interest.

= State-of-the art approach: Univariate tests of association
between each of p markers and the phenotype.
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(Image from: lkram MK et al., PLoS Gen. 2010)
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Linkage disequilibrium (LD)

= LD: the non-random association of alleles at two or more loci
= May be quantified by r?(j, ') = corr(Z;, Z;;), where

Zj = lminor allele is present for SNP j
= LD is structured in diagonal blocks:
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This dependency is generally not accounted for in GWAS.



A block-wise approach for GWAS

Goal: detect blocks of adjacent SNPs associated with phenotype

A three-step approach?

@ Hierarchical clustering of the SNPs with adjacency constraint
using the LD similarity

® Estimation of the optimal number of groups: Gap statistic

© Selection of the associated blocks: Group Lasso regression

Implemented in package BALD

Computational bottleneck
clustering step: steps 1... and 2!

'Dehman, Ambroise, Neuvial BMC Bioinformatics 2015



Adjacency-constrained clustering
Inputs

= data matrix: genotypes of p SNPs
= similarity measure between features: LD between SNPs
= similarity measure between clusters of features: Ward

...........

Algorithm
Starting from p clusters of individual features, iteratively merge of
the two nearest clusters among adjacent clusters



Ward’s distance between classes A and B

_ _PapPB -2 —2 _op—1,-1
d(A B) = A+ PB (PA Saa+ pg“SeB —2p4 PR SAB)7
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d(A, B) only depends of sums of LD within blocks



Time and space complexities

Package Method time space

hclust  Without adjacency constraint O(p3) 0O(p?)
rioja  Adj. c. with pre-calculation of LD O(p?) O(p?)
BALD Adj. c. w/o pre-calculation of LD  O(p?)  O(p)

Improving space complexity
(at no price on time complexity)

= Adjacency constraint: from O(p3) to O(p?)
= Without pre-calculation of all pairwise LD: from O(p?) to O(p)

Lower bound on time complexity: O(p?)

= All pairwise LD need to be calculated.



Numerical experiments

HIV data

= Dalmasso et al., PLoS One, 2008
= 605 individuals, 300 000 SNP

Execution time for one run of the algorithm

chromosome 22 1 whole genome
size 5417 23304 307851
time (hours) 0.16 3 538

Can we do faster?



A faster, approximate solution



A simplifying biological assumption

LD induces short range dependency compared to p:

= LD(j, ") ~ 0 when |j/ —j| > h
= a p x h similarity matrix, with h < p

Only O(ph) pairwise values of LD need to be
calculated



Are we done yet ?

LD coefficients can be pre-calculated and stored in memory (p X h)
... but the algorithm is still quadratic in p (in time)!

Two remaining challenges

p successive merging steps to be performed. For each of them:

1. sums of the form S;; must be calculated
smartly

finding the next best merge is linear in p
2. need an efficient way (ie o(p)) to store and
retrieve candidate merges



1- Pre-calculation of within-block sums

(a.k.a. the “pencil trick™)
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= Two arrays of sizes p x h for storing the pencil sums.




2- Binary heaps to store merge candidates

= Each parent is smaller
than its children
= Given a position /:
= Parent(i) = [i/2]
o Left(i) = 2i
« Right(i) = 2i + 1
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storage retrieve min insert delete min

unordered array  O(p) 0(1) O(p)
min-heap 0(1) O(log(p))  O(log(p))




A quasilinear time implementation

@ band similarity matrix

® pre-calculation of specific cumulative sums of LD
© storing candidate merges using a binary heap

O implementation of the binary heap in C

Time and space complexity: O (p(log(p) + h))

Numerical experiments on synthetic data

200

150

100
o

e - ¥ =
P e . 0 4t g g b g e
—

T T T U
0 5000 10000 15000 50401 56402 50403 50404



Numerical experiments on real data

Linear execution time in p and h on real data
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Conclusion and perspective

Summary
= Incorporating biological constraints can be useful
= Good tradeoff between time and space complexity
Perspective

= p-values on blocks (Suzuki & Shimodaira, package pvclust)
= Application to other problems (Hi-C ?)
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