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Prediction models with multi-omic data

» Response variable Y: e.g., responder status, survival time
> Xl(m), .. ,X,S,T) form the mth group of clinical or “omics”
variables, termed “modality”

Goal: Constructing (and evaluating) a prediction model for Y
based on Xl(l), . ,X,S}),...,xl("”), - ,ng)
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Examples

clinical low-dim
transcriptomic high-dim
miRNA high-dim
methylation high-dim
SNP high-dim
copy number variation high-dim
metabolomic high-dim
proteomic high-dim
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The “naive” strategy

> Ignore the modality structure, i.e. treat all variables
X ox8 XM XY equally.

> Apply a prediction method, for example fit a L;-penalized
regression model (lasso):

M  pm

B=argmin—((B) + 233 18]

m=1 j=1

where £ is the log-likelihood and )\ a penalty parameter.
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Separate models

» Problem: In most cases the modalities are not equally
relevant to the prediction problem, and ideally one wants to
take this information into account.

> A small relevant modality may “get lost” within the variables
from a large irrelevant modality.

» Separate models for each modality which are ultimately
combined into a single prediction rule are an answer to this
problem (Zhao et al., Brief Bioinf 2014), but also sub-optimal.
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Overview

> One low- and one high-dimensional modality
De Bin et al. (Stat Med 2014)
» Several high-dimensional modalities

Boulesteix et al. (TechRep 2015)
» Other topics

» validation
De Bin et al. (BMC Med Res Meth 2014)
> stability
De Bin et al. (Biometrics 2015)
> benchmarking
Boulesteix et al. (Am Stat 2015)
Boulesteix et al. (PLOS Comp Biol 2015)
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Special case:
one low and one high-dimensional modality

clinical omics
x® o x x® o xP
low-dim (p1 < n) | high-dim (p2 > n)
cheap expensive
well-investigated explorative
highly relevant 777

» Differences have to be taken into account.

» Naive strategy is inappropriate.
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The “residual” strategy

» Fit a (linear, logistic, Cox) model of the form
Y~ xW g x

» Fit an omics-based model to the residuals of this model using
lasso regression (or boosting, etc), i.e. consider the linear

predictor J‘-’;l B}I)Xj(l) as an offset when estimating
2 2
B .. 8D
> Interpretation: omics variables are only used as “complement”
to the clinical variables.
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The “favoring” strategy

» Penalize only X1(2)’ . ,X,Sf) in lasso:
R P2 )
B =argmin—((8) + A3 |5
j=1

> Intermediate between naive and residual strategies

Prediction models 9/33



The “dimension reduction” strategy

» Summarize X1(2), e ,Xg) in form of a score Z(2) (or several
components).

» Fit a (linear, logistic, Cox) model of the form
Yo x4 x4 2@
» Problem: Z() overfits the data:
> split the training data into two training subsets

» or use pre-validation (Tibshirani & Efron, SAGMB 2002;
Matsui et al., Clin Canc Res 2012)
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Special Issue Paper
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Investigating the prediction ability of
survival models based on both clinical
and omics data: two case studies

Riccardo De Bin,**" Willi Sauerbrei® and Anne-Laure Boulesteix®

In biomedical literature, numerous prediction models for clinical outcomes have been developed based either
on clinical data or, more recently, on high-throughput molecular data (omics data). Prediction models based on
both types of data, however, are less common, although some recent studies suggest that a suitable combination
of clinical and molecular information may lead to models with better predictive abilities. This is probably due
to the fact that it is not straightforward to combine dala with dlfferent characteristics and dimensions (poorly
characterized high-di i omics data, well-i i i clinical data). In this paper, we
analyze two publicly available datasets related to breast cancer and neuroblastoma, respectively, in order to show
some possible ways to combine clinical and omics data into a prediction model of time-to-event outcome. Different
strategies and statistical methods are exploited. The results are compared and discussed according to different
criteria, including the discriminative ability of the models, computed on a validation dataset. Copyright © 2014
John Wiley & Sons, Ltd.

Keywords:  clinical inform:
survival analysis

ion: combining clinical and omics data; high-dimensional data: prediction models:
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Lasso with different penalties (cooperation with Novartis Biomarkers)
x® B x@B o ox@ XM X

oo <«

> Rationale: In practice different modalities often have different
information content.

» New 'IPF-Lasso’ method (integrative lasso with penalty
factors) minimizes

M Pm
0B+ > A > 18
m=1  j=1

where A, is the modality-specific penalty parameter.
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Lasso with different penalties (cooperation with Novartis)

» Estimation: rescale the variables as

#(m) _ 3o (m)
X =X o

and use standard estimation algorithm (e.g., 'glmnet’).
» Choice of \,,, m=1,..., M:

» fully data-driven: cross-validation
» taking other aspects into account (e.g., cost)

» Implementation: R package 'ipflasso’ based on 'glmnet’
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MAXIMILIANS
unvERSITAT

» New method performs worse than standard lasso if modalities
are similar in terms of prediction accuracy and better

otherwise:
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LMU

IPF-LASSQ'’s features

IPF-lasso: integrative L;-penalized regression

> sparse
with penalty factors for prediction
> flexible based on multi-omics data
fast Anne-Laure Boulesteix’, Riccardo De Bin!,
>
as Xiaoyu Jiang?, Mathias Fuchs!

» tran sport a b | e ! Department of Medical Informatics, Biometry and Epidemiology, Univer-
sity of Munich (LMU), Marchioninistr. 15, D-81377 Munich, Germany.
boulesteix@ibe.med.uni-muenchen.de

» inherits lasso's prope rties  Novartis Biomarker Development
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ipflasso: Integrative Lasso with Pemalty Factors

Th package is cvr2 ipflasso). Imnet to be used when the (large) differ
with respct 1 thei informatin content i temasof predicron. For exampl, i blomedical applications paient owicome such a survivl time o résponse 10 therapy may have 10 be
predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often outcome
prediction thanthe mRNA data. The ipflasso method takes his problenintoaccouat by sing diffrent penaly parametes forpredictorsfom dieent ‘modalties, The ratio between
the ‘penalty be chosen by

Version: [

Depends glmnet, survival

Published: 2015-11.24

Author Anne Laure Boulesteix, Mathias Fuchs

Maintainer Annell ibe.med. hen d

BugReports NA

License: GPL-2 | GPL3 [expanded from: GPL]

URL. NA

NeedsCompilation: no
CRAN checks:  ipflasso results

Downloads:
Reference manval: ipflasso pdf

Package source: ipflasso 0.1targz

Windows binaries: r-devel: ipflasso 0.1.zip, rrelease: ipflasso 0.1 zip, r-oldrel: ipflasso 0.1zip

S X Mavericks binaries: r-release: ipflasso 0.Ltez, r-oldrel: ipflasso 0.1tgz

cvr2. ipflasso o

Description

from different
penalty factors by cross-validation from the list pF1ist of candidates.

Usage

o2 lvﬂassc(x ¥, fanily, type.measure, standardize=TRUE,
Ipha=1, blocks, nflm, nfolds, ncv,
ALSE)

nzeronax = +Inf,
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Limitations of IPF-LASSO

» CV is computationally expensive when M is large!

» tends to select variables from many/all modalities

Alternative strategy: adopting the offset strategy in multi-modality
settings (master’s thesis Simon Klau, co-supervised by Tobias
Herold and Vindi Jurinovic)
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Offset strategy in multi-modality settings

Recall: offset strategy

> Fita (linear, logistic, Cox) model of the form

(1) (1)
Y~X1 +"'+XP1

P Fit an omics-based model to the residuals of this model using lasso regression (or boosting, etc), i.e.

consider the linear predictor Zf;l B;I)Xj(l) as an offset when estimating ﬁgz), ey B,(,?.
v
Extension:
ider the li di m-1s=pe B0 5 () fF
» consider the linear preaictor Zg:]_ j=1 Bj j ~asano set

when estimating ﬁ:{m), e ,(,'r:').
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Validation
Stability

Benchmarking

What is validation of added predictive value?

» accuracy of combined model

— apply model to independent test data and compute
accuracy

» accuracy improvement of combined vs. clinical model

— apply both models to independent test data and
compute/compare accuracies

» effect of an omics score

— fit model to clinical variables and omics score using
independent data and test coefficient of omics score

» importance of an omics score for prediction

— estimate accuracy of two models using cross-validation
within independent test dataset: (i) clinical variables, (ii)
clinical variables + score.
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Validation

De Bin et al. BMC Medical Research Methodology 2014, 14117

http://www.biomedcentral.com/1471-2288/14/117
" BMC

Medical Research Methodology

RESEAR

ARTICLE Open Access

Added predictive value of omics data: specific
issues related to validation illustrated by two
case studies

Riccardo De Bin'", Tobias Herold®? and Anne-Laure Boulesteix!

Abstract

Background: In the last years, the importance of independent validation of the prediction ability of a new gene
signature has been largely recognized. Recently, with the development of gene signatures which integrate rather
than replace the clinical predictors in the prediction rule, the focus has been moved to the validation of the added
predictive value of a gene signature, i.e. to the verification that the inclusion of the new gene signature in a prediction
model is able to improve its prediction ability.

Methods: The high-dimensional nature of the data fram which a new signature is derived raises challenging issues
and necessitates the modification of classical methods to adapt them to this framework. Here we show how to
validate the added predictive value of a signature derived from high-dimensional data and critically discuss the
impact of the choice of methods on the results,

Results: The analysis of the added predictive value of two gene signatures developed in two recent studies on the
survival of leukemia patients allows us to illustrate and empirically compare different validation techniques in the
high-dimensional framework.

Conclusions: The issues related ta the high-dimensional nature of the omics predictors space affect the validation
process. An analysis procedure based on repeated cross-validation is suggested,

Keywords: Added predictive value, Omics score, Prediction model, Time-to-event data, Validation
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Validation

Stability

Benchmarking

Stability investigations using bootstrap samples

Table 1: Clioma data: selection frequencies of the 10 top ranked models

» Va ri a b | e se | ection iS unsta b|e i for bootstrap(n), bootstrap(m) and subsample(m), based on 10,000 psendo-

samples for a = 0.05 and presented in decreasing sum of the three selection

Th | d d | frequencies,
e selected mode may

Tootstrap(n) _bootstrap(m) _subsample(m)

model rank freq.  rank freq. rank  freg

change a lot when the data FE T e o

. basic+kard1+epi 8 03 7 128 2 47

Change a ||tt|e basic+kard1+surgd2 6 103 3 163 1 352
basic+kard]+sex 3 108 2 187 6 290

basic 140 15 8 123 3 308

S Common a roach. Re eat basic-+kard1-+cort 5 106 4 148 5 208
p p - p basic+kard1+sex+epi 1 156 6 140 9 225

. . basic+ s 2 62 4 148 7264
variable selection on basic-+epi 5033 12104 8 242
basic+ops 01 20 9 121 12189

. basic* 2k g 2 10 117 10 205

bootstrap samples: ra— Teoomawow ol
basic+gradd2+kard 1 +cort 8 03 43 40 23 84

. . . . basic+gradd2-+kard1+cort+ops 3 108 55 33 55 35

— variable inclusion frequencies basichardl w2 e opt 10 80 52 85 67

— model frequencies

Motivation of our project: Bootstrap has problems, subsamples may be
more appropriate.
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Problem: inflated type-1 error for tests
performed on bootstrap samples

> Z-test: Z = /n(X — pg)/o ~ N(0,1) under Ho : p = po.

» For Z* = \/n(X* — ug)/c computed from a bootstrap
sample, we have under Hg

E(Z*) = E(E(Z*|F)) = E(Z) = 0
and
V(Z*) = V(E(Z*|F)) + E(V(Z'|F))
= V(Z|F) + E(V(2))
= 2

Janitza et al., Biometrical Journal 2016.

Prediction models 22/33



Validation

Stability

LMU

Benchmarking

Impact on bootstrap-based variable selection

S [ O .

m bootstrap(n)
@ bootstrap(m)
O subsample(m)

06

g8
£se

frequency of inclusion
0 02 04 6 08
L | | |
alter [E—
arauch =
agebgew Em——
fonight EE==F
iy E—
foh2s P
fier ==
Tpoll
fitotmed EEE——
fo3h24 —
fopt
feh2s E—
fsauge =
fshlauf P
frequency of inclusion
02 04 08
| L |
neeee———————————————
i

= 2% € 2 5 i
248 4 £28% A EEFED 38838
8 5 2 & 8= strong low effect| e
2 effect ]

variable

Figure 2: Ozone data: inclusion frequencies, based on 10,000 pseudo-samples.  Figure 3 Simulated data: inclusion froquencies of the variables based on

for all the 24 available variables. The results refer to the case a = 0.05 1,000,000 pseudo-samples, 1,000 for each dataset

De Bin et al., Biometrics 2016.
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Validation
Stability

Benchmarking

Benchmarking example: the real data study on IPF-lasso

0.25

» We applied IPF-lasso to
three datasets (leukemia,
breast cancer).

0.20

0.15

» For two of them IPF-lasso
performed better, for one
of them worse than

Predi

0.10

) = S competitor SGL.
o —— sparse group lasso
g L e » What to conclude?
0 1 2 3 4 5
oo » What to do? Report only

the two good results? Or
risk to get rejected?
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Validation
Stability

Benchmarking

Performed better on real data?

Typical sentence in abstracts of computational science articles:

“Our method performed better than existing methods on real data”

» Compute CV error of K methods for J data sets (J ~ 2 — 10)

» In machine learning: test difference in error rates using paired
t-test or Wilcoxon signed rank test

Which null hypothesis is being tested?

A

Ho: Epn(c(f)) = Epn(e(£2)) ?

No, since data sets are drawn from different P's Py, ..., P!
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Stabilit

Benchmarking

> interface to openML (www.openml.org)
» packages 'mlr’, package 'CMA’

>
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Validation
Stability

Benchmarking

What is being tested?

» Distribution P is now considered as the outcome of a random
variable @, and size of data set n as the outcome of a random

variable N.

» Then the hypothesis that is implicitly being tested when
comparing methods k; and ko can be written as

E(s(ki, ®, N)) = E(e(ka, @, N)),

where E denotes the expectation over the random variables ®
and N.

Boulesteix et al., The American Statistician 2015.
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Validation
Stability

Test statistic and power considerations

Benchmarking

» Test statistic (paired t-test):

T =

i

Vuwt S(Ae(D) - Be)?
where Ae(D;) is the difference between estimated errors of

methods k> and k; in data set D; and Ae is the mean over
data sets.

» Power calculation for “sample size” N (number of data sets)

Boulesteix et al., The American Statistician 2015.
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MAXIMILIANS:
U || itz

MONCHEN

Number

20 25 30

N
15

10

Stability

éenchmarking

of data sets and power

N (B8t 7ia)?
A2 /o2

1.0

0.8

Power

0.4

0.0

T T T T T T T T T T T T T
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0 10 20 30 40 50 60

A n
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Validation
Lwowic- Stability
UNIVERSITAT Benchmarking

GPLOS s

Ten Simple Rules for Reducing Overoptimistic
Reporting in Methodological Computational
Research

Anne-Laure Boulesteix*

Rule 1: Assess the New Method

Rule 2: Compare the New Method to the Best

Rule 3: Consider Enough Datasets

Rule 4: Do Not “Fish” for Datasets

Rule 5: Think of the No-Free-Lunch Theorem and Report Limitations
Rule 6: Consider Several Criteria

Rule 7: Validate Using Independent Data

Rule 8: Design Simulations Appropriately

Rule 9: Provide All Information

Rule 10: Read the Other Ten Simple Rules Articles

>
>
>
>
>
>
>
>
>
>
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Validation
Stability

Parallel to computational/clinical research
Plea for benchmarking

Benchmarking

> Making the world better

» Clin: new interventions that improve health outcomes
» Comp: new methods that make results of statistical analyses
closer to the truth

» Comparison studies
» Clin: validation studies, phase Ill, phase IV, meta-analyses

» Comp: well-conducted benchmark studies

Would we take medicines evaluated in underpowered phase | studies
conducted by a single team?

Boulesteix et al., 2013. PLOS ONE.

Boulesteix, 2013. Bioinformatics.
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Benchmarking

Research EEDOM 10 RESEARGH

Publication Bias in Methodological Computational ﬂ Libertas Academica

Anne-Laure Boulesteix', Veronika Stierle! and Alexander Hapfelmeier?

Department of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilian University, Munich, Germany. 2Department of Medical
Statistics and Epidemiology, Klinikum rechts der Isar Technical University of Munich, Munich, Germany.

Supplementary Issue: Statistical Systems Theory in Cancer Modeling, Diagnosis, and Therapy

ABSTRACT: The problem of publication bias has long been discussed in research fields such as medicine. There is a consensus that publication bias is a
reality and that solutions should be found to reduce it. In methodological computational research, including cancer informatics, publication bias may also
be at work. The publication of negative research findings is certainly also a relevant issue, but has attracted very little attention to date. The present paper
aims at providing a new formal framework to describe the notion of publication bias in the context of methodological computational research, facilitate and
stimulate discussions on this topic, and increase in the scientific ity. We report an exemplary pilot study that aims at gaining experiences

with the collection and analysis of information on unpublished research efforts with respect to publication bias, and we outline the encountered problems.

Based on these experiences, we try to formalize the notion of publication bias.

KEYWORDS: epistemology, publication practice, false research findings, overoptimism
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Thank you for your attention!

Thanks to:

» Colleagues: R. De Bin, M. Eugster, M. Fuchs, T. Herold, S.
Janitza, X. Jiang, V. Jurinovic, S. Klau, S. Lauer, W.
Sauerbrei,

» German Research Foundation (DFG), Novartis Biomarkers
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