

Group and Sparse Group Partial Least Square Approaches

Applied in Genomics Context

Benoit Liquet^{1,2}, Pierre Lafaye de Micheaux³, Boris Heljbum^{4,5}, Rodolphe Thiébaut^{4,5}

University de Pau et Pays de l'Adour, LMAP.
 ARC Centre of Excellence for Mathematical and Statistical Frontiers,
 GREST, ENSAI,
 Inria, SISTM,

⁵ Vaccine Research Institute, Creteil, France.

Contents

- 1. Motivation: Integrative Analysis for group data
- Application on a HIV vaccine study
- 3. PLS approaches: regression, canonical, correlation
- 4. Sparse Model
 - Lasso
 - Group and Sparse Group Lasso
 - Group and Sparse Group PLS
- Simulation Studies
- 6. R package: sgPLS
- 7. Concluding remarks

Integrative Analysis

Wikipedia. **Data integration** "involves **combining data** residing in different sources and providing users with a unified view of these data. This process becomes significant in a variety of situations, which include both commercial and **scientific**".

System Biology. **Integrative Analysis:** Analysis of heterogeneous types of data from inter-platform technologies.

Goal. Combine multiple types of data:

- Contribute to a better understanding of biological mechanism.
- Have the potential to improve the diagnosis and treatments of complex diseases.

"Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG, fMRI, NIRS)

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG, fMRI, NIRS)
- "neuroimaging genetics." Y matrix: fMRI (Fusion of functional magnetic resonance imaging), X matrix: SNP

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG, fMRI, NIRS)
- "neuroimaging genetics." Y matrix: fMRI (Fusion of functional magnetic resonance imaging), X matrix: SNP
- "Ecology/Environment." Y matrix: Water quality variables, X matrix: Landscape variables

▶ Main constraint: situation with p > n

- Main constraint: situation with p > n
- Aims:
 - Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.

- Main constraint: situation with p > n
- ► Aims:
 - Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
 - Asymmetric situation. X matrix= predictors and Y matrix= responses variables, analysis focuses on prediction.

- Main constraint: situation with p > n
- Aims:
 - 1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
 - 2. Asymmetric situation. **X** matrix= predictors and **Y** matrix= responses variables, analysis focuses on prediction.
- Partial Least Square Family: dimension reduction approaches

- Main constraint: situation with p > n
- ► Aims:
 - Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
 - Asymmetric situation. X matrix= predictors and Y matrix= responses variables, analysis focuses on prediction.
- Partial Least Square Family: dimension reduction approaches
 - PLS find pairs of latent vectors C_X = Xu, C_Y = Yv with maximal covariance.

e.g.,
$$\mathbf{C}_{\mathbf{X}} = u_1 \times SNP_1 + u_2 \times SNP_2 + \ldots + u_p \times SNP_p$$

- Symmetric situation and Asymmetric situation.
- Successive matrix decomposition of X and Y into new latent variables.

PLS and sparse PLS

PLS

- Output of PLS: K pairs of latent variables (C_X^k, C_Y^k), k = 1,..., K with K << min(p, q).</p>
- Reduction method but no variable selection for extracting the most relevant variables from each latent variables.

PLS and sparse PLS

PLS

- Output of PLS: K pairs of latent variables $(\mathbf{C_X}^k, \mathbf{C_Y}^k)$, k = 1, ..., K with K << min(p, q).
- Reduction method but no variable selection for extracting the most relevant variables from each latent variables.

sparse PLS

- sparse PLS select the relevant SNPs
- Some coefficients u_l are equal to 0 $C^k = u_1 \times SNP_1 + \underbrace{u_2}_{=0} \times SNP_2 + \underbrace{u_3}_{=0} \times SNP_3 + \ldots + u_p \times SNP_p$
- The sPLS components are linear combinations of the selected variables

Group structures within the data

► Natural example: Categorical variables which is a group of dummies variables in a regression setting.

Group structures within the data

- Natural example: Categorical variables which is a group of dummies variables in a regression setting.
- Genomics: genes within the same pathway have similar functions and act together in regulating a biological system.
 - \hookrightarrow These genes can add up to have a larger effect
 - \hookrightarrow can be detected as a group (i.e., at a pathway or gene set/module level).

Group structures within the data

- ► Natural example: Categorical variables which is a group of dummies variables in a regression setting.
- Genomics: genes within the same pathway have similar functions and act together in regulating a biological system.

 - \hookrightarrow can be detected as a group (i.e., at a pathway or gene set/module level).

We consider variables are divided into groups:

► Example *p*: SNPs grouped into *K* genes

$$\textbf{X} = [\underbrace{SNP_1, \ldots + SNP_k}_{gene_1} | \underbrace{SNP_{k+1}, SNP_{k+2}, \ldots, SNP_h}_{gene_2} | \ldots | \underbrace{SNP_{l+1}, \ldots, SNP_p}_{gene_K}]$$

Example p: genes grouped into K pathways/modules ($X_j = \text{gene}_j$)

$$\mathbf{X} = \underbrace{[X_1, X_2, \dots, X_k}_{M_1} | \underbrace{X_{k+1}, X_{k+2}, \dots, X_h}_{M_2} | \dots | \underbrace{X_{l+1}, X_{l+2}, \dots, X_p}_{M_K}]$$

Aim: Select group variables taking into account the data structures

Aim: Select group variables taking into account the data structures

PLS components $C^k = u_1 \times X_1 + u_2 \times X_2 + u_3 \times X_3 + \ldots + u_p \times X_p$

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

Aim: Select group variables taking into account the data structures

► PLS components

$$C^k = u_1 \times X_1 + u_2 \times X_2 + u_3 \times X_3 + \ldots + u_p \times X_p$$

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} module_{1} \\ u_{1} \\ = 0 \end{array}}_{module_{1}} \underbrace{X_{1} + \underbrace{\begin{array}{c} u_{2} \\ u_{2} \\ = 0 \end{array}}_{\neq 0} \underbrace{X_{2} + \underbrace{\begin{array}{c} u_{3} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{X_{3} + \underbrace{\begin{array}{c} u_{4} \\ u_{4} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{X_{1} + \underbrace{\begin{array}{c} u_{5} \\ u_{5} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{X_{5} \dots \underbrace{\begin{array}{c} u_{p-1} \\ u_{p-1} \\ \neq 0 \end{array}}_{= 0} \underbrace{X_{p-1} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} \underbrace{X_{p}}_{p} \underbrace{X_{p}}_{p$$

→ select group of variables; all the variables within a group are selected
otherwise none of them are selected

Aim: Select group variables taking into account the data structures

PLS components

$$C^k = u_1 \times X_1 + u_2 \times X_2 + u_3 \times X_3 + \ldots + u_p \times X_p$$

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} module_{1} \\ \hline u_{1} \\ \hline = 0 \end{array}}_{pq} \underbrace{\begin{array}{c} X_{1} + \underbrace{\begin{array}{c} u_{2} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{3} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{3} + \underbrace{\begin{array}{c} u_{4} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{1} + \underbrace{\begin{array}{c} u_{5} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} X_{2} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6} \\ } \\ \hline \end{array}}_{pq} \underbrace{\begin{array}{c} u_{6} + \underbrace{\begin{array}{c} u_{6}$$

⇒ select group of variables; all the variables within a group are selected otherwise none of them are selected

does not achieve sparsity within each group

Sparse Group PLS

Aim: combine both sparsity of groups and within each group. Example, **X** matrix= genes, we might be interested in identifying particularly important genes in pathways of interest.

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} \text{module}_{1} \\ u_{1} \\ = 0 \end{array}}_{\text{module}_{1}} X_{1} + \underbrace{\begin{array}{c} u_{2} \\ u_{2} \\ = 0 \end{array}}_{\neq 0} X_{2} + \underbrace{\begin{array}{c} u_{3} \\ \neq 0 \end{array}}_{\neq 0} X_{3} + \underbrace{\begin{array}{c} u_{4} \\ u_{4} \\ \neq 0 \end{array}}_{\neq 0} X_{1} + \underbrace{\begin{array}{c} u_{5} \\ u_{5} \\ \neq 0 \end{array}}_{\neq 0} X_{5} \dots \underbrace{\begin{array}{c} u_{p-1} \\ u_{p-1} \\ \neq 0 \end{array}}_{= 0} X_{p-1} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ \neq 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 \end{array}}_{= 0} X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ = 0 X_{p}$$

Sparse Group PLS

Aim: combine both sparsity of groups and within each group. Example, **X** matrix= genes, we might be interested in identifying particularly important genes in pathways of interest.

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} \text{module}_{1} \\ \text{u}_{1} \\ \text{=0} \end{array}}_{\text{=0}} X_{1} + \underbrace{\begin{array}{c} u_{2} \\ u_{2} \\ \text{=0} \end{array}}_{\text{\neq 0}} X_{2} + \underbrace{\begin{array}{c} \text{module}_{2} \\ \text{u}_{3} \\ \text{\neq 0} \end{array}}_{\text{\neq 0}} X_{3} + \underbrace{\begin{array}{c} u_{4} \\ u_{5} \\ \text{\neq 0} \end{array}}_{\text{\neq 0}} X_{5} \dots \underbrace{\begin{array}{c} u_{p-1} \\ u_{p-1} \\ \text{=0} \end{array}}_{\text{=0}} X_{p-1} + \underbrace{\begin{array}{c} u_{p} \\ u_{p} \\ \text{=0} \end{array}}_{\text{=0}} X_{p}$$

sparse group PLS components (sgPLS)

$$C^k = \underbrace{\begin{array}{c} \text{module}_1 \\ \text{module}_1 \\ \text{} \text{} \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_2 \\ \text{} \text{} \text{} \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_K \\ \text{} \\ \text{} \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_K \\ \text{} \\ \text{} \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_K \\ \text{} \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_K \\ \text{} \end{array}$$

Aims in regression setting:

- Select group variables taking into account the data structures; all the variables within a group are selected otherwise none of them are selected
- Combine both sparsity of groups and within each group; only relevant variables within a group are selected

Illustration: DALIA trial

- Evaluation of the safety and the immunogenicity of a vaccine on n = 19 HIV-infected patients.
- ► The vaccine was injected on weeks 0, 4, 8 and 12 while patients received an antiretroviral therapy.
- An interruption of the antiretrovirals was performed at week 24.
- After vaccination, a deep evaluation of the immune response was performed at week 16.
- Repeated measurements of the main immune markers and gene expression were performed every 4 weeks until the end of the trials.

DALIA trial: Question?

First results obtained using group of genes

Significant change of gene expression among 69 modules over time before antiretroviral treatment interruption.

DALIA trial: Question?

First results obtained using group of genes

- Significant change of gene expression among 69 modules over time before antiretroviral treatment interruption.
- How the gene abundance of these 69 modules as measured at week 16 correlated with immune markers measured at the same time.

sPLS, gPLS and sgPLS

- Responses variables Y= immune markers composed of q = 7 cytokines (IL21, IL2, IL13, IFNg, Luminex score, TH1 score, CD4).
- ► Predictors variables **X**= gene expressions (*p* = 5399) extracted from the 69 modules.
- Use the structure of the data (modules) for gPLS and sgPLS. Each gene belongs to one of the 69 modules.
- Asymmetric situation.

Results

- Tuning parameters: number of components, number of selected groups, number of selected genes

 - ⇔ estimated by K-fold cross-validation
- Cumulative percentage of variance of the responses:

	comp1	comp2	comp3
sPLS	70.05	84.19	89.53
gPLS	55.13	73.72	83.43
sgPLS	64.18	83.19	89.25

Results: Modules and number of genes selected

			gPLS			sgPLS			sPLS	
	size	comp1	comp2	comp3	comp1	comp2	comp3	comp1	comp2	comp3
M1.1	79	79	0	0	19	0	0	8	2	1
M3.2	126	126	0	0	41	0	0	22	0	0
M3.5	131	0	0	0	11	24	0	7	7	1
M3.6	42	42	0	0	15	0	0	6	0	0
M4.1	60	0	0	0	6	0	0	4	0	0
M4.13	72	72	0	0	26	0	0	11	0	0
M4.15	41	41	0	0	15	0	0	10	0	1
M4.2	43	43	0	0	14	0	0	7	1	1
M4.6	104	104	0	0	28	0	0	16	2	0
M5.1	214	0	0	0	46	0	0	21	2	4
M5.14	54	54	0	0	13	0	0	7	0	2
M5.15	24	24	24	0	20	0	0	18	0	0
M5.7	119	0	0	0	18	0	40	8	0	2
M6.13	38	38	0	0	10	0	0	7	0	0
M6.6	40	40	0	0	19	0	0	11	0	0
M7.1	150	150	0	0	37	0	0	19	2	2
M7.27	29	29	0	0	8	0	0	3	0	1
M4.7	82	0	0	0	0	20	0	5	7	0
M6.7	62	0	0	0	0	23	0	3	4	1
M8.59	13	0	13	0	0	4	0	0	3	0
M5.2	65	0	0	0	0	0	32	0	1	0
M4.8	53	53	0	0	0	0	0	1	0	0
M7.35	19	19	0	0	0	0	0	1	1	0
M4.11	17	0	0	17	0	0	0	0	0	0

Results: Modules and number of genes selected

_			gPLS			sgPLS			sPLS	
	size	compl	comp2	comp3	compl	comp2	comp3	compl	comp2	comp3
M1.1	79	79	0	0	19	0	0	- 8	2	1
M3.2	126	126	0	0	41	0	0	22	0	0
M3.5	131	0	0	0	- 11	24	0	7	2	1
M3.6	42	42	0	0	15	0	0	6	0	0
M4.1	60	0		0	6	0	0	4	0	0
M4.13	72	72	0	0	26	0	0	11	0	0
M4.15	41	41		0	15	0	0	10	0	1
M4.2	43	43		0	14	0	0	7	1	1
M4.6	104	104	0	0	28	0	0	16	2	0
M5.1	214	0	0	0	46	0	0	21	2	4
M5.14	54	54	0	0	13	0	0	7	0	2
M5.15	24	24	24	0	20	0	0	18	0	0
M5.7	119	0	0	0	18	0	40	8	0	2
M6.13	38	38	0	0	10	0	0	7	0	0
M6.6	40	40	0	0	19	0	0	11	0	0
M7.1	150	150	0	0	37	0	0	19	2	2
M7.27	29	29	0	0	8	0	0	3	0	1
M4.7	82	0	0	0	0	20	0		7	0
M6.7	62	0	0	0	0	23	0	3	4	1
M8.59	13	0	13	0	0	4	0	0	3	0
M5.2	65	0	0	0	0	0	32	0	1	0
M4.8	53	53	0	0	0	0	0	1	0	0
M7.35	19	19	0	0	0	0	0	1	1	0
M4.11	17	0		17	0	0	0	0	0	0
M2.1	105	0	0	0	0	0	0	- 1	0	0
M3.1	74	0		0	0	0	0	1	0	0
M4.12	87	0	0	0	0	0	0	1	0	1
M4.16	79	0	0	0	0	0	0	2	0	1
M4.9	87	0	0	0	0	0	0	4	1	1
M5.10	196	0	0	0	0	0	0	- 3	3	0
M5.11	59	0		0	0	0	0	3	2	0
M5.13	147	0	0	0	0	0	0	1	2	4
M5.3	91	0		0	0	0	0	3	1	0
M5.4	115	0	0	0	0	0	0	3	2	2
M5.5	211	0		0	0	0	0	12	4	0
M5.6	126	0		0	0	0	0	- 3	2	1
M5.8	97	0		0	0	0	0	4	1	0
M5.9	72	0		0	0	0	0	4	0	0
M6.10	67	0	0	0	0	0	0	4	0	
M6.14	33	0		0	0	0	0	3	0	0
M6.2	121	0		0	0	0	0	2	2	1
M6.20 M6.4	42 82	0		0	0	0	0	1 3	2 2	0
		0								
M6.9 M7.11	35 104	0		0	0	0	0	2 2	1 2	0
M7.12	104	0		0	0	0	0	4	0	
M7.12	48	0	·	0	0	0	0	1 1	1	0
M7.14	78	0		0	"	0	0	2	0	1
M7.15	78 56	0		0	0	0	0	1	2	1
M7.16	93	0		0	0	0	0	4	î	ė
M7.21	76	0	·	0	0	0	0	3	0	
M7.21								2		0
M7.24 M7.25	65 93	0		0	0	0	0	2	0	3
M7.26	63	0	ě	0	0	0	0	2	ő	
M7.4	109	0		0	"	0	0	4	2	0
M7.5	132	0		0	0	0	0	6	5	2
M7.6	94	0	·	0	0	0	0	2	3	î
M7.8	85	0		0	0	0	0	3		
M8.13	27	0		0	0	0	0	1 1	0	
M8.14	27	0		0	0	0	0	1 2	ï	0
M7.33	49	0	ě	0	0	0	0		- 1	0
M7.7	89	0	ě	0	0	ő	0	ő	3	1
M4.14	55	0		0			0		0	- 1
M4.4	68	0		0	ő	o o	0	ő	0	i
M4.5	74	0		0	0	0	0	0	0	i
		_	_	_	_	_	_	_	_	_

sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- ▶ But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- but sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- ▶ But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .
- However, gPLS led to more genes selected than sgPLS (944)

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .
- However, gPLS led to more genes selected than sgPLS (944)
- In this application, the sgPLS approach led to a parsimonious selection of modules and genes that sound very relevant biologically Chaussabel's functional modules: http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules

Visualisation of these associations

Stability of the variable selection (100 bootstrap samples)

PLS family

PLS: Partial Least Squares or Projection to Latent Structures

- (i) Partial Least Squares Correlation (PLSC) also called PLS-SVD,
- (ii) PLS in mode A (PLS-W2A, for Wold's Two-Block, Mode A PLS),
- (iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA)
- (iv) Partial Least Squares Regression (PLSR, or PLS2).

PLS family

PLS: Partial Least Squares or Projection to Latent Structures

- (i) Partial Least Squares Correlation (PLSC) also called PLS-SVD,
- (ii) PLS in mode A (PLS-W2A, for Wold's Two-Block, Mode A PLS),
- (iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA)
- (iv) Partial Least Squares Regression (PLSR, or PLS2).
 - ► (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
 - Different objective functions to optimise.
 - Good news: all are based on the singular value decomposition (SVD).

Singular Value Decomposition (SVD)

Definition 1

Let a matrix $M : p \times q$ of rank r:

$$\mathcal{M} = \mathcal{U} \Delta \mathcal{V}^{\mathsf{T}} = \sum_{l=1}^{r} \delta_{l} \mathbf{u}_{l} \mathbf{v}_{l}^{\mathsf{T}}, \tag{1}$$

- ▶ $\mathcal{U} = (\mathbf{u}_l) : p \times r$ and $\mathcal{V} = (\mathbf{v}_l) : q \times r$ are two orthogonal matrices which contain the normalised left (resp. right) singular vectors
- ▶ Δ = diag($\delta_1, ..., \delta_r$): the ordered singular values $\delta_1 \ge \delta_2 \ge ... \ge \delta_r$.

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$(\boldsymbol{u}^*, \boldsymbol{v}^*) = \underset{\|\boldsymbol{u}\|_2 = \|\boldsymbol{v}\|_2 = 1}{\operatorname{argmax}} Cov(\boldsymbol{X}\boldsymbol{u}, \boldsymbol{Y}\boldsymbol{v}), \qquad h = 1, \dots, r,$$

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$(\mathbf{u}^*, \mathbf{v}^*) = \underset{\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1}{\operatorname{argmax}} Cov(\mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v}), \qquad h = 1, \dots, r,$$

The solution is given by the SVD of $\mathcal{M} = \mathbf{X}^{\mathsf{T}}\mathbf{Y}$:

$$(u^*, v^*) = (u_1, v_1)$$

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$(\mathbf{u}^*, \mathbf{v}^*) = \underset{\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1}{\operatorname{argmax}} Cov(\mathbf{X}\mathbf{u}, \mathbf{Y}\mathbf{v}), \qquad h = 1, \dots, r,$$

The solution is given by the SVD of $\mathcal{M} = \mathbf{X}^{\mathsf{T}}\mathbf{Y}$:

$$\left(\textbf{\textit{u}}^*,\textbf{\textit{v}}^*\right)=\left(\textbf{\textit{u}}_1,\textbf{\textit{v}}_1\right)$$

Why is it useful?

Theorem 2

Eckart-Young (1936) states that the SVD provides the best reconstitution (in a least squares sense) of a given matrix \mathcal{M} by a matrix with a lower rank:

$$\min_{\mathcal{A} \text{ of rank } k} \|\mathcal{M} - \mathcal{A}\|_F^2 = \sum_{l=k+1}^r \delta_l^2 = \left\| \mathcal{M} - \sum_{l=1}^k \delta_l \mathbf{u}_l \mathbf{v}_l^\mathsf{T} \right\|_F^2.$$

If the minimum is searched for matrices $\mathcal R$ of rank 1, which are under the form $\widetilde{uv}^\mathsf{T}$ where $\widetilde{u},\widetilde{v}$ are non-zero vectors, we obtain

$$\min_{\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}} \left\| \boldsymbol{\mathcal{M}} - \widetilde{\boldsymbol{u}}\widetilde{\boldsymbol{v}}^{\mathsf{T}} \right\|_F^2 = \sum_{l=2}^r \delta_l^2 = \left\| \boldsymbol{\mathcal{M}} - \delta_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathsf{T}} \right\|_F^2.$$

Thus, solving

$$\underset{\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}}{\operatorname{argmin}} \left\| \boldsymbol{\mathcal{M}} - \widetilde{\boldsymbol{u}}\widetilde{\boldsymbol{v}}^{\mathsf{T}} \right\|_{F}^{2} \tag{2}$$

and norming the resulting vectors gives us \mathbf{u}_1 and \mathbf{v}_1 .

Thus, solving

$$\underset{\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}}{\operatorname{argmin}} \left\| \mathcal{M} - \widetilde{\boldsymbol{u}}\widetilde{\boldsymbol{v}}^{\mathsf{T}} \right\|_{F}^{2} \tag{2}$$

and norming the resulting vectors gives us \mathbf{u}_1 and \mathbf{v}_1 .

- Shen and Huang (2008) connected (2) to least square minimisation in regression
 - \hookrightarrow rendering possible the use of many existing variable selection techniques using regularisation penalties.

Thus, solving

$$\underset{\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}}{\operatorname{argmin}} \left\| \boldsymbol{\mathcal{M}} - \widetilde{\boldsymbol{u}}\widetilde{\boldsymbol{v}}^{\mathsf{T}} \right\|_{F}^{2} \tag{2}$$

and norming the resulting vectors gives us \mathbf{u}_1 and \mathbf{v}_1 .

- Shen and Huang (2008) connected (2) to least square minimisation in regression
 - \hookrightarrow rendering possible the use of many existing variable selection techniques using regularisation penalties.
- Same spirit, we propose iterative algorithms to find normed vectors $\widetilde{\boldsymbol{u}}$ and $\widetilde{\boldsymbol{v}}$ that minimise the following penalised sum-of-squares criterion

$$\|\mathcal{M} - \widetilde{\boldsymbol{u}}\widetilde{\boldsymbol{v}}^{\mathsf{T}}\|_{F}^{2} + P_{\lambda}(\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}}),$$

for specific cases of matrix \mathcal{M} and several penalisation terms $P_{\lambda}(\widetilde{\boldsymbol{u}},\widetilde{\boldsymbol{v}})$.

Package related to PLS model

- plsdepot: contains different methods for PLS analysis of one or two data tables such as Tucker's Inter-Battery, NIPALS, SIMPLS, SIMPLS-CA, PLS Regression, and PLS Canonical Analysis.
- pls: Multivariate regression methods Partial Least Squares Regression (PLSR), Principal Component Regression (PCR) and Canonical Powered Partial Least Squares (CPPLS).
- plspm: Tools for Partial Least Squares Path Modeling (PLS-PM)
- spls: This package provides functions for fitting a Sparse Partial Least Squares Regression and Classification
- mixOmics: Omics Data Integration Project including generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis
- PMA: Performs Penalized Multivariate Analysis: a penalized matrix decomposition, sparse principal components analysis, and sparse canonical correlation analysis

Main Packages related to lasso model: univariate response variable

- glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models
- lars: Least Angle Regression, Lasso and Forward Stagewise
- penalized: L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model
- SGL: SGL: Fit a GLM (or cox model) with a combination of lasso and group lasso regularization
- lassoscore: High-Dimensional Inference with the Penalized Score Test

Main Packages related to lasso model: Multivariate response variable

- glmnet: Lasso for multivariate response based on a group penalty
- MSGLasso: Multivariate Sparse Group Lasso for computing the multivariate sparse group lasso with complex group structures.

R package: sgPLS

- sgPLS package implements sPLS, gPLS and sgPLS methods: http://cran.r-project.org/web/packages/sgPLS/index.html
- Including some functions for choosing the tuning parameters related to predictor matrix for different sparse PLS model (regression mode).
- Some simple code to perform a sgPLS method.

- Last version includes sparse group Discriminant Analysis.
- Package compatible with many mixOmics functions

Concluding Remarks

- Provide two sparse PLS approaches taking into account the data structure
 - group PLS which enables to select group of variables.
 - sparse group PLS which adds some sparsity within group.
- Methods available for the 4 cases of PLS models.
- Simulation and application highlight the advantages of the group PLS and sparse group compared to sparse PLS.
- Methods available through sgPLS R package.

Concluding Remarks

- Provide two sparse PLS approaches taking into account the data structure
 - group PLS which enables to select group of variables.
 - sparse group PLS which adds some sparsity within group.
- Methods available for the 4 cases of PLS models.
- Simulation and application highlight the advantages of the group PLS and sparse group compared to sparse PLS.
- Methods available through sgPLS R package.
- Extension to other penalty functions:
 - In linear model setting: Garcia et al (2014) proposed method to select important regressor groups, subgroups and individuals.
 - One more layout than the sparse group Lasso.

References

- Yuan,M. and Lin,Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 (1), 49-67.
- ► Simon,N., Friedman,J., Hastie,T. and Tibshirani,R. (2013) *A sparse-group lasso*. Journal of Computational and Graphical Statistics, 22 (2), 231-245.
- Le Cao,K.A., Rossouw,D., Robert-Granie,C. and Besse,P. (2008) Sparse PLS: Variable Selection when Integrating Omics data. Statistical Application and Molecular Biology, 7 (1):37.
- Lin,D., Zhang,J., Li,J., Calhoun,V., Deng,H.W. and Wang,Y.P. (2013) Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics, 14 (1), 245.
- Garcia, T.P., Muller, S., Carroll, R.J. and Walzem, R.L. (2014) Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data. Bioinformatics, 30 (6), 831-837.
- ► Liquet B., Lafaye de Micheaux P, Hejblum B., Thiebaut R., *Group and Sparse Group Partial Least Square Approaches Applied in Genomics Context.*Bioinformatics, (2016).

ANY QUESTIONS?