Group and Sparse Group Partial Least Square Approaches

Applied in Genomics Context

Benoit Liquet ${ }^{1,2}$, Pierre Lafaye de Micheaux ${ }^{3}$, Boris Heljbum ${ }^{4,5}$, Rodolphe Thiébaut ${ }^{4,5}$
${ }^{1}$ University de Pau et Pays de l'Adour, LMAP.
${ }^{2}$ ARC Centre of Excellence for Mathematical and Statistical Frontiers,
${ }^{3}$ CREST, ENSAI,
${ }^{4}$ Inria, SISTM,
${ }^{5}$ Vaccine Research Institute, Creteil, France.

Contents

1. Motivation: Integrative Analysis for group data
2. Application on a HIV vaccine study
3. PLS approaches: regression, canonical, correlation
4. Sparse Model

- Lasso
- Group and Sparse Group Lasso
- Group and Sparse Group PLS

5. Simulation Studies
6. R package: sgPLS
7. Concluding remarks

Integrative Analysis

Wikipedia. Data integration "involves combining data residing in different sources and providing users with a unified view of these data. This process becomes significant in a variety of situations, which include both commercial and scientific".

System Biology. Integrative Analysis: Analysis of heterogeneous types of data from inter-platform technologies.

Goal. Combine multiple types of data:

- Contribute to a better understanding of biological mechanism.
- Have the potential to improve the diagnosis and treatments of complex diseases.

Example: Data definition

Example: Data definition

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.

Example: Data definition

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, \mathbf{X} matrix: brain activity (e.g., EEG, fMRI, NIRS)

Example: Data definition

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG, fMRI, NIRS)
- "neuroimaging genetics." Y matrix: fMRI (Fusion of functional magnetic resonance imaging), \mathbf{X} matrix: SNP

Example: Data definition

- "Omics." Y matrix: gene expression, X matrix: SNP (single nucleotide polymorphism). Many others such as proteomic, metabolomic data.
- "neuroimaging". Y matrix: behavioral variables, X matrix: brain activity (e.g., EEG, fMRI, NIRS)
- "neuroimaging genetics." Y matrix: fMRI (Fusion of functional magnetic resonance imaging), \mathbf{X} matrix: SNP
- "Ecology/Environment." Y matrix: Water quality variables, X matrix: Landscape variables

Data: Constraints and Aims

- Main constraint: situation with $p>n$

Data: Constraints and Aims

- Main constraint: situation with $p>n$
- Aims:

1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.

Data: Constraints and Aims

- Main constraint: situation with $p>n$
- Aims:

1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
2. Asymmetric situation. \mathbf{X} matrix $=$ predictors and \mathbf{Y} matrix $=$ responses variables, analysis focuses on prediction.

Data: Constraints and Aims

- Main constraint: situation with $p>n$
- Aims:

1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
2. Asymmetric situation. \mathbf{X} matrix $=$ predictors and \mathbf{Y} matrix $=$ responses variables, analysis focuses on prediction.

- Partial Least Square Family: dimension reduction approaches

Data: Constraints and Aims

- Main constraint: situation with $p>n$
- Aims:

1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
2. Asymmetric situation. \mathbf{X} matrix $=$ predictors and \mathbf{Y} matrix $=$ responses variables, analysis focuses on prediction.

- Partial Least Square Family: dimension reduction approaches
- PLS find pairs of latent vectors $\mathbf{C}_{\mathbf{X}}=\mathbf{X u}, \mathbf{C}_{\mathbf{Y}}=\mathbf{Y v}$ with maximal covariance.

$$
\text { e.g., } \quad \mathbf{C}_{\mathbf{x}}=u_{1} \times S N P_{1}+u_{2} \times S N P_{2}+\ldots+u_{p} \times S N P_{p}
$$

- Symmetric situation and Asymmetric situation.
- Successive matrix decomposition of \mathbf{X} and \mathbf{Y} into new latent variables.

PLS and sparse PLS

PLS

- Output of PLS: K pairs of latent variables $\left(\mathbf{C}_{\mathbf{X}}{ }^{k}, \mathbf{C}_{\mathbf{Y}}{ }^{k}\right)$, $k=1, \ldots, K$ with $K \ll \min (p, q)$.
- Reduction method but no variable selection for extracting the most relevant variables from each latent variables.

PLS and sparse PLS

PLS

- Output of PLS: K pairs of latent variables ($\mathbf{C}_{\mathbf{X}}{ }^{k}, \mathbf{C}_{\mathbf{Y}}{ }^{k}$), $k=1, \ldots, K$ with $K \ll \min (p, q)$.
- Reduction method but no variable selection for extracting the most relevant variables from each latent variables.

sparse PLS

- sparse PLS select the relevant SNPs
- Some coefficients u_{l} are equal to 0 $C^{k}=u_{1} \times S N P_{1}+\underbrace{u_{2}}_{=0} \times S N P_{2}+\underbrace{u_{3}}_{=0} \times S N P_{3}+\ldots+u_{p} \times S N P_{p}$
- The sPLS components are linear combinations of the selected variables

Group structures within the data

- Natural example: Categorical variables which is a group of dummies variables in a regression setting.

Group structures within the data

- Natural example: Categorical variables which is a group of dummies variables in a regression setting.
- Genomics: genes within the same pathway have similar functions and act together in regulating a biological system.
\hookrightarrow These genes can add up to have a larger effect
\hookrightarrow can be detected as a group (i.e., at a pathway or gene set/module level).

Group structures within the data

- Natural example: Categorical variables which is a group of dummies variables in a regression setting.
- Genomics: genes within the same pathway have similar functions and act together in regulating a biological system.
\hookrightarrow These genes can add up to have a larger effect
\hookrightarrow can be detected as a group (i.e., at a pathway or gene set/module level).

We consider variables are divided into groups:

- Example p : SNPs grouped into K genes

$$
\mathbf{X}=[\underbrace{S N P_{1}, \ldots+S N P_{k}}_{\text {gene }_{1}}|\underbrace{S N P_{k+1}, S N P_{k+2}, \ldots, S N P_{h}}_{\text {gene }_{2}}| \ldots \mid \underbrace{S N P_{l+1}, \ldots, S N P_{p}}_{\text {gene }_{k}}]
$$

- Example p : genes grouped into K pathways/modules ($X_{j}=$ gene $_{j}$)

$$
\mathbf{X}=[\underbrace{X_{1}, X_{2}, \ldots, X_{k}}_{M_{1}}|\underbrace{X_{k+1}, X_{k+2}, \ldots, X_{h}}_{M_{2}}| \ldots \mid \underbrace{X_{1+1}, X_{1+2}, \ldots, X_{p}}_{M_{K}}]
$$

Group PLS

Aim: Select group variables taking into account the data structures

Group PLS

Aim: Select group variables taking into account the data structures

- PLS components

$$
C^{k}=u_{1} \times X_{1}+u_{2} \times X_{2}+u_{3} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- sparse PLS components (sPLS)

$$
C^{k}=u_{1} \times X_{1}+\underbrace{u_{2}}_{=0} \times X_{2}+\underbrace{u_{3}}_{=0} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

Group PLS

Aim: Select group variables taking into account the data structures

- PLS components

$$
C^{k}=u_{1} \times X_{1}+u_{2} \times X_{2}+u_{3} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- sparse PLS components (sPLS)

$$
C^{k}=u_{1} \times X_{1}+\underbrace{u_{2}}_{=0} \times X_{2}+\underbrace{u_{3}}_{=0} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- group PLS components (gPLS)

$$
C^{k}=\overbrace{\underbrace{u_{1}}_{=0} X_{1}+\underbrace{u_{2}}_{=0} X_{2}}^{\text {module }_{1}}+\overbrace{\underbrace{u_{3}}_{\neq 0} X_{3}+\underbrace{u_{4}}_{\neq 0} X_{1}+\underbrace{u_{5}}_{\neq 0} X_{5}}^{\text {module }_{2}} \ldots \overbrace{\underbrace{u_{p-1}}_{=0} X_{p-1}+\underbrace{u_{p}}_{=0} X_{p}}^{\text {module }_{K}}
$$

\hookrightarrow select group of variables; all the variables within a group are selected otherwise none of them are selected

Group PLS

Aim: Select group variables taking into account the data structures

- PLS components

$$
C^{k}=u_{1} \times X_{1}+u_{2} \times X_{2}+u_{3} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- sparse PLS components (sPLS)

$$
C^{k}=u_{1} \times X_{1}+\underbrace{u_{2}}_{=0} \times X_{2}+\underbrace{u_{3}}_{=0} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- group PLS components (gPLS)

$$
C^{k}=\overbrace{\underbrace{u_{1}}_{=0} X_{1}+\underbrace{u_{2}}_{=0} X_{2}}^{\text {module }_{1}}+\overbrace{\underbrace{u_{3}}_{\neq 0} X_{3}+\underbrace{u_{4}}_{\neq 0} X_{1}+\underbrace{u_{5}}_{\neq 0} X_{5}}^{\text {module }_{2}} \ldots \overbrace{\underbrace{u_{p-1}}_{=0} X_{p-1}+\underbrace{u_{p}}_{=0} X_{p}}^{\text {module }_{K}}
$$

\hookrightarrow select group of variables; all the variables within a group are selected otherwise none of them are selected
does not achieve sparsity within each group

Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example, \boldsymbol{X} matrix = genes, we might be interested in identifying particularly important genes in pathways of interest.

- sparse PLS components (sPLS)

$$
C^{k}=u_{1} \times X_{1}+\underbrace{u_{2}}_{=0} \times X_{2}+\underbrace{u_{3}}_{=0} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- group PLS components (gPLS)

$$
C^{k}=\overbrace{\underbrace{u_{1}}_{=0} X_{1}+\underbrace{u_{2}}_{=0} X_{2}}^{\text {module }_{1}}+\overbrace{\underbrace{u_{3}}_{\neq 0} X_{3}+\underbrace{u_{4}}_{\neq 0} X_{1}+\underbrace{u_{5}}_{\neq 0} X_{5}}^{\text {module }_{2}} \ldots \overbrace{\underbrace{u_{p-1}}_{=0} X_{p-1}+\underbrace{u_{p}}_{=0} X_{p}}^{\text {module }_{K}}
$$

Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example, \boldsymbol{X} matrix = genes, we might be interested in identifying particularly important genes in pathways of interest.

- sparse PLS components (sPLS)

$$
C^{k}=u_{1} \times X_{1}+\underbrace{u_{2}}_{=0} \times X_{2}+\underbrace{u_{3}}_{=0} \times X_{3}+\ldots+u_{p} \times X_{p}
$$

- group PLS components (gPLS)

$$
C^{k}=\overbrace{\underbrace{u_{1}}_{=0} X_{1}+\underbrace{u_{2}}_{=0} X_{2}}^{\text {module }_{1}}+\overbrace{\underbrace{u_{3}}_{\neq 0} X_{3}+\underbrace{u_{4}}_{\neq 0} X_{1}+\underbrace{u_{5}}_{\neq 0} X_{5}}^{\text {module }_{2}} \ldots \overbrace{\underbrace{u_{p-1}}_{=0} X_{p-1}+\underbrace{u_{p}}_{=0} X_{p}}^{\text {module }_{K}}
$$

- sparse group PLS components (sgPLS)

$$
C^{k}=\overbrace{\underbrace{u_{1}}_{=0} X_{1}+\underbrace{u_{2}}_{=0} X_{2}}^{\text {module }_{1}}+\overbrace{\underbrace{u_{3}}_{\neq 0} X_{3}+\underbrace{u_{4}}_{=0} X_{4}+\underbrace{u_{5} X_{5}}_{=0} \ldots \overbrace{\underbrace{u_{p-1}}_{=0} X_{p-1}}^{\text {module }_{2}}+\underbrace{u_{p}}_{=0} X_{p}}^{\text {module }_{K}}
$$

Aims in regression setting:

- Select group variables taking into account the data structures; all the variables within a group are selected otherwise none of them are selected
- Combine both sparsity of groups and within each group; only relevant variables within a group are selected

Illustration: DALIA trial

- Evaluation of the safety and the immunogenicity of a vaccine on $n=19$ HIV-infected patients.
- The vaccine was injected on weeks $0,4,8$ and 12 while patients received an antiretroviral therapy.
- An interruption of the antiretrovirals was performed at week 24.
- After vaccination, a deep evaluation of the immune response was performed at week 16.
- Repeated measurements of the main immune markers and gene expression were performed every 4 weeks until the end of the trials.

DALIA trial: Question?

First results obtained using group of genes

- Significant change of gene expression among 69 modules over time before antiretroviral treatment interruption.

DALIA trial: Question?

First results obtained using group of genes

- Significant change of gene expression among 69 modules over time before antiretroviral treatment interruption.
- How the gene abundance of these 69 modules as measured at week 16 correlated with immune markers measured at the same time.

sPLS, gPLS and sgPLS

- Responses variables $\mathbf{Y}=$ immune markers composed of $q=7$ cytokines (IL21, IL2, IL13, IFNg, Luminex score, TH1 score, CD4).
- Predictors variables $\mathbf{X}=$ gene expressions $(p=5399)$ extracted from the 69 modules.
- Use the structure of the data (modules) for gPLS and sgPLS. Each gene belongs to one of the 69 modules.
- Asymmetric situation.

Results

- Tuning parameters: number of components, number of selected groups, number of selected genes
\hookrightarrow mean square error of prediction (MSEP)
\hookrightarrow estimated by K-fold cross-validation
- Cumulative percentage of variance of the responses:

	comp1	comp2	comp3
sPLS	70.05	84.19	89.53
gPLS	55.13	73.72	83.43
sgPLS	64.18	83.19	89.25

Results: Modules and number of genes selected

		gPLS			sgPLS		sPLS			
	size	comp1	comp2	comp3	comp1	comp2	comp3	comp1	comp2	comp3
M1.1	79	79	0	0	19	0	0	8	2	1
M3.2	126	126	0	0	41	0	0	22	0	0
M3.5	131	0	0	0	11	24	0	7	7	1
M3.6	42	42	0	0	15	0	0	6	0	0
M4.1	60	0	0	0	6	0	0	4	0	0
M4.13	72	72	0	0	26	0	0	11	0	0
M4.15	41	41	0	0	15	0	0	10	0	1
M4.2	43	43	0	0	14	0	0	7	1	1
M4.6	104	104	0	0	28	0	0	16	2	0
M5.1	214	0	0	0	46	0	0	21	2	4
M5.14	54	54	0	0	13	0	0	7	0	2
M5.15	24	24	24	0	20	0	0	18	0	0
M5.7	119	0	0	0	18	0	40	8	0	2
M6.13	38	38	0	0	10	0	0	7	0	0
M6.6	40	40	0	0	19	0	0	11	0	0
M7.1	150	150	0	0	37	0	0	19	2	2
M7.27	29	29	0	0	8	0	0	3	0	1
M4.7	82	0	0	0	0	20	0	5	7	0
M6.7	62	0	0	0	0	23	0	3	4	1
M8.59	13	0	13	0	0	4	0	0	3	0
M5.2	65	0	0	0	0	0	32	0	1	0
M4.8	53	53	0	0	0	0	0	1	0	0
M7.35	19	19	0	0	0	0	0	1	1	0
M4.11	17	0	0	17	0	0	0	0	0	0

Results: Modules and number of genes selected

	size	pPLS			sepp. 5			spLS		
		compl	comp ${ }^{2}$	cemp ${ }^{3}$	compl	$c_{\text {cmp } 2}$	emp3	compl	comp2	comp 3
M1.1	79	${ }^{79}$	0	0	19	0	0	8	2	1
M3.2	126	126	0	0	41	0	0	22	0	0
M3.5	131	0	0	0	11	24	0	$?$	7	1
M3.6	42	42	0	0	15	0	0	6	0	a
M4. 1	60	0	0	0	6	0	0	4	0	a
M4.13	72	72	0	0	26	0	0	11	0	0
M4.15	41	41	0	0	15	0	0	10	0	1
Ma.	43	43	0	0	14	0	0	7	1	1
M4/6	104	104	0	0	28	0	0	16	2	0
M5. 1	214	0	0	0	46	0	0	21	2	4
Ms. 14	54	54	0	0	13	0	0	7	0	2
MS.15	24	24	24	0	20	0	0	18	0	0
Ms. 7	119	0	0	0	18	a	40	8	0	2
M6. 13	38	38	0	0	10	0	0	7	0	0
м6.6	40	40	0	0	19	0	0	11	0	0
M7.1	150	150	0	0	37	0	0	19	2	2
MT. 27	29	29	0	0	8	0	0	3	0	1
M 4.7	82	0	0	0	0	20	0	5	7	0
M6. 7	62	0	0	0	0	23	0	3	4	1
M8. 59	13	0	13	0	0	4	0	0	3	0
M5. 2	65	0	0	0	0	0	32	0	1	0
M4.8	53	53	0	0	0	0	0	1	0	0
M7.35	19	19	0	0	0	0	0	1	1	0
M 4.11	17	0	0	17	0	0	0	0	0	0
M2.1	105	0	0	0	0	0	0	1	0	0
M3. 1	74	0	0	0	0	0	0	1	0	0
M4. 12	87	0	0	0	0	0	0	1	0	1
M 4.16	79	0	0	0	0	0	0	2	0	1
M4.9	87	0	0	0	0	0	0	4	1	1
Ms. 10	196	0	0	0	0	0	0	3	3	0
Ms.11	59	0	0	0	0	0	0	3	2	0
MS. 13	147	0	0	0	0	0	0	1	2	4
M53	91	0	0	0	0	0	0	3	1	0
M54	115	0	0	0	0	0	0	3	2	2
M5.5	211	0	0	0	0	0	0	12	4	0
M5.6	126	0	0	0	0	0	0	3	2	1
M5.8	57	0	0	0	0	0	0	4	1	0
M5.9	72	0	0	0	0	0	0	4	0	0
M6. 10	67	0	0	0	0	0	0	4	0	0
M6. 14	33	0	0	0	0	0	0	3	0	0
M6. 2	121	0	0	0	0	0	0	2	2	1
M6. 20	42	0	0	0	0	0	0	1	2	a
M6.4	88	0	0	0	0	0	0	3	2	-
M6.9	35	0	0	0	0	0	0	2	1	0
m]. 11	104	0	0	0	0	0	0	2	2	1
MT. 12	108	0	0	0	0	0	0	4	0	0
M 7.14	48	0	0	0	0	0	0	4	1	0
M7. 15	78	0	0	0	0	0	0	2	0	1
M 1.16	56	0	0	0	0	0	0	1	2	1
M7.2	93	0	0	0	0	0	0	4	1	0
M 21	76	0	0	0	0	0	0	3	0	0
M ${ }^{2} 24$	65	0	0	0	0	0	0	2	0	0
M7.25	93	0	0	0	0	0	0	3	2	3
MT.26	63	0	0	0	0	0	0	2	0	0
M7.4	108	0	0	0	0	0	0	4	2	0
M75	132	0	0	0	0	0	0	6	5	2
M7.6	94	0	0	0	0	0	0	2	3	1
M78	85	0	0	0	0	0	0	3	0	0
M8. 13	27	0	0	0	0	0	0	1	0	0
M8.14	27	0	0	0	0	0	0	2	1	0
M7.33	49	0	0	0	0	0	0	0	1	0
M77	89	0	0	0	0	0	0	0	3	1
M 4.14	55	0	0	0	0	0	0	0	0	1
Ma4	58	0	0	0	0	0	0	0	0	1
M 4.5	74	0	0	0	0	0	0	0	0	1

Results: Venn diagram

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .
- However, gPLS led to more genes selected than sgPLS (944)

Results: Venn diagram

- sgPLS methods selected slightly more genes than the sPLS (respectively 487 and 420 genes selected)
- But sgPLS selected fewer modules than the sPLS (respectively 21 and 64 groups of genes selected by sPLS)
- Of note, all the 21 groups of genes selected by the sgPLS were included in those selected by the sPLS method.
- sgPLS selected slightly more modules than gPLS (4 more, 14/21 in common). .
- However, gPLS led to more genes selected than sgPLS (944)
- In this application, the sgPLS approach led to a parsimonious selection of modules and genes that sound very relevant biologically Chaussabel's functional modules: http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules

Visualisation of these associations

Stability of the variable selection (100 bootstrap samples)

Apoptosis / Survival
Apoptosis / Survival
Cell Cycle
Cell Death
Cytotoxic/NK Cell
Erythrocytes
Inflammation
Mitochondrial Respiration
Mitochondrial Stress / Proteasome
Monocytes
Neutrophils
Plasma Cells
Platelets
Protein Synthesis
T cell
T cells
Undetermined

Now some mathematics ...

PLS family

PLS: Partial Least Squares or Projection to Latent Structures
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD,
(ii) PLS in mode A (PLS-W2A, for Wold's Two-Block, Mode A PLS),
(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA)
(iv) Partial Least Squares Regression (PLSR, or PLS2).

PLS family

PLS: Partial Least Squares or Projection to Latent Structures
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD,
(ii) PLS in mode A (PLS-W2A, for Wold's Two-Block, Mode A PLS),
(iii) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis (CCA)
(iv) Partial Least Squares Regression (PLSR, or PLS2).

- (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
- Different objective functions to optimise.
- Good news: all are based on the singular value decomposition (SVD).

Singular Value Decomposition (SVD)

Definition 1

Let a matrix $\mathcal{M}: p \times q$ of rank r :

$$
\begin{equation*}
\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Delta} \boldsymbol{V}^{\boldsymbol{\top}}=\sum_{l=1}^{r} \delta_{l} \mathbf{u}_{l} \boldsymbol{v}_{l}^{\boldsymbol{\top}}, \tag{1}
\end{equation*}
$$

- $\boldsymbol{U}=\left(\boldsymbol{u}_{l}\right): p \times r$ and $\boldsymbol{V}=\left(\boldsymbol{v}_{l}\right): q \times r$ are two orthogonal matrices which contain the normalised left (resp. right) singular vectors
- $\boldsymbol{\Delta}=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{r}\right)$: the ordered singular values $\delta_{1} \geqslant \delta_{2} \geqslant \cdots \geqslant \delta_{r}$.

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$
\left(\mathbf{u}^{*}, \boldsymbol{v}^{*}\right)=\underset{\|\boldsymbol{u}\|_{2}=\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \operatorname{Cov}(\mathbf{X} \mathbf{u}, \mathbf{Y} \mathbf{v}), \quad h=1, \ldots, r,
$$

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$
\left(\boldsymbol{u}^{*}, \boldsymbol{v}^{*}\right)=\underset{\|\boldsymbol{u}\|_{2}=\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \operatorname{Cov}(\mathbf{X} \mathbf{u}, \mathbf{Y} \mathbf{v}), \quad h=1, \ldots, r,
$$

The solution is given by the SVD of $\boldsymbol{\mathcal { M }}=\mathbf{X}^{\top} \mathbf{Y}$:

$$
\left(\boldsymbol{u}^{*}, \boldsymbol{v}^{*}\right)=\left(\boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right)
$$

Connexion between SVD and maximum covariance

Optimization problem of the PLS:

$$
\left(\boldsymbol{u}^{*}, \boldsymbol{v}^{*}\right)=\underset{\|\boldsymbol{u}\|_{2}=\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \operatorname{Cov}(\mathbf{X} \mathbf{u}, \mathbf{Y} \mathbf{v}), \quad h=1, \ldots, r,
$$

The solution is given by the SVD of $\boldsymbol{\mathcal { M }}=\mathbf{X}^{\top} \mathbf{Y}$:

$$
\left(\boldsymbol{u}^{*}, \boldsymbol{v}^{*}\right)=\left(\boldsymbol{u}_{1}, \boldsymbol{v}_{1}\right)
$$

Why is it useful?

SVD properties

Theorem 2

Eckart-Young (1936) states that the SVD provides the best reconstitution (in a least squares sense) of a given matrix $\boldsymbol{\mathcal { M }}$ by a matrix with a lower rank:

$$
\min _{\mathcal{A} \text { of rank } k}\|\boldsymbol{M}-\mathcal{A}\|_{F}^{2}=\sum_{l=k+1}^{r} \delta_{l}^{2}=\left\|\mathcal{M}-\sum_{l=1}^{k} \delta_{l} \boldsymbol{u} \boldsymbol{\boldsymbol { v } _ { l } ^ { \top }} \mid\right\|_{F}^{2} .
$$

If the minimum is searched for matrices \mathcal{A} of rank 1 , which are under the form $\widetilde{\boldsymbol{u}}^{\top}$ where $\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{v}}$ are non-zero vectors, we obtain

$$
\min _{\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}}}\left\|\boldsymbol{M}-\widetilde{\boldsymbol{u}}^{\top}\right\|_{F}^{2}=\sum_{l=2}^{r} \delta_{l}^{2}=\left\|\boldsymbol{M}-\delta_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}^{2}
$$

SVD properties

Thus, solving

$$
\begin{equation*}
\underset{\widetilde{\mathbf{u}}, \widetilde{\boldsymbol{v}}}{\operatorname{argmin}}\left\|\mathcal{M}-\widetilde{\boldsymbol{u} v}^{\top}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$ and norming the resulting vectors gives us \boldsymbol{u}_{1} and \boldsymbol{v}_{1}.

SVD properties

Thus, solving

$$
\begin{equation*}
\underset{\widetilde{\mathbf{u}}, \widetilde{\boldsymbol{v}}}{\operatorname{argmin}}\left\|\boldsymbol{M}-\widetilde{\boldsymbol{u} v}^{\top}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

and norming the resulting vectors gives us \boldsymbol{u}_{1} and \boldsymbol{v}_{1}.

- Shen and Huang (2008) connected (2) to least square minimisation in regression
\hookrightarrow rendering possible the use of many existing variable selection techniques using regularisation penalties.

SVD properties

Thus, solving

$$
\begin{equation*}
\underset{\widetilde{\mathbf{u}}, \widetilde{\boldsymbol{v}}}{\operatorname{argmin}}\left\|\boldsymbol{M}-\widetilde{\boldsymbol{u} v}^{\top}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

and norming the resulting vectors gives us \boldsymbol{u}_{1} and \boldsymbol{v}_{1}.

- Shen and Huang (2008) connected (2) to least square minimisation in regression
\hookrightarrow rendering possible the use of many existing variable selection techniques using regularisation penalties.
- Same spirit, we propose iterative algorithms to find normed vectors \widetilde{u} and $\widetilde{\boldsymbol{v}}$ that minimise the following penalised sum-of-squares criterion

$$
\left\|\boldsymbol{M}-\widetilde{\boldsymbol{u}}^{\top}\right\|_{F}^{2}+P_{\lambda}(\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{v}}),
$$

for specific cases of matrix $\boldsymbol{\mathcal { M }}$ and several penalisation terms $P_{\lambda}(\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{v}})$.
\hookrightarrow many sparse versions of the four methods (i)-(iv).

Now some R code

Package related to PLS model

- plsdepot: contains different methods for PLS analysis of one or two data tables such as Tucker's Inter-Battery, NIPALS, SIMPLS, SIMPLS-CA, PLS Regression, and PLS Canonical Analysis.
- pls: Multivariate regression methods Partial Least Squares Regression (PLSR), Principal Component Regression (PCR) and Canonical Powered Partial Least Squares (CPPLS).
- plspm: Tools for Partial Least Squares Path Modeling (PLS-PM)
- spls: This package provides functions for fitting a Sparse Partial Least Squares Regression and Classification
- mix0mics: Omics Data Integration Project including generalised Canonical Correlation Analysis, sparse Partial Least Squares and sparse Discriminant Analysis
- PMA: Performs Penalized Multivariate Analysis: a penalized matrix decomposition, sparse principal components analysis, and sparse canonical correlation analysis

Main Packages related to lasso model: univariate response variable

- glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models
- lars: Least Angle Regression, Lasso and Forward Stagewise
- penalized: L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model
- SGL: SGL: Fit a GLM (or cox model) with a combination of lasso and group lasso regularization
- lassoscore: High-Dimensional Inference with the Penalized Score Test

Main Packages related to lasso model: Multivariate response variable

- glmnet: Lasso for multivariate response based on a group penalty
- MSGLasso: Multivariate Sparse Group Lasso for computing the multivariate sparse group lasso with complex group structures.

R package: sgPLS

- sgPLS package implements sPLS, gPLS and sgPLS methods: http://cran.r-project.org/web/packages/sgPLS/index.html
- Including some functions for choosing the tuning parameters related to predictor matrix for different sparse PLS model (regression mode).
- Some simple code to perform a sgPLS method.

```
model.sgPLS <- sgPLS(X, Y, ncomp = 2, mode = "regression",
    keepX = c(4, 4), keepY = c(4, 4),
    ind.block.x = ind.block.x ,
    ind.block.y = ind.block.y,
    alpha.x = c(0.5, 0.5),
    alpha.y = c(0.5, 0.5))
```

- Last version includes sparse group Discriminant Analysis.
- Package compatible with many mixOmics functions

Concluding Remarks

- Provide two sparse PLS approaches taking into account the data structure
- group PLS which enables to select group of variables.
- sparse group PLS which adds some sparsity within group.
- Methods available for the 4 cases of PLS models.
- Simulation and application highlight the advantages of the group PLS and sparse group compared to sparse PLS.
- Methods available through sgPLS R package.

Concluding Remarks

- Provide two sparse PLS approaches taking into account the data structure
- group PLS which enables to select group of variables.
- sparse group PLS which adds some sparsity within group.
- Methods available for the 4 cases of PLS models.
- Simulation and application highlight the advantages of the group PLS and sparse group compared to sparse PLS.
- Methods available through sgPLS R package.
- Extension to other penalty functions:
- In linear model setting: Garcia et al (2014) proposed method to select important regressor groups, subgroups and individuals.
- One more layout than the sparse group Lasso.

References

- Yuan,M. and Lin,Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68 (1), 49-67.
- Simon,N., Friedman,J., Hastie,T. and Tibshirani,R. (2013) A sparse-group lasso. Journal of Computational and Graphical Statistics, 22 (2), 231-245.
- Le Cao,K.A., Rossouw,D., Robert-Granie,C. and Besse,P. (2008) Sparse PLS: Variable Selection when Integrating Omics data. Statistical Application and Molecular Biology, 7 (1):37.
- Lin,D., Zhang,J., Li,J., Calhoun,V., Deng,H.W. and Wang,Y.P. (2013) Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics, 14 (1), 245.
- Garcia,T.P., Muller,S., Carroll,R.J. and Walzem,R.L. (2014) Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data. Bioinformatics, 30 (6), 831-837.
- Liquet B., Lafaye de Micheaux P, Hejblum B., Thiebaut R., Group and Sparse Group Partial Least Square Approaches Applied in Genomics Context. Bioinformatics, (2016).

ANY QUESTIONS ?

