Adjacency-constrained hierarchical clustering of a similarity matrix

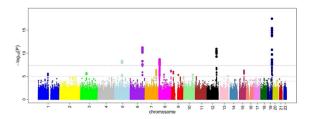
C. Ambroise, A. Dehman, M. Koskas, P. Neuvial, G. Rigaill

Rencontres R 2016, Toulouse

Context: linkage disequilibrium in GWAS

Genome-Wide Association Studies

- Goal: identify genetic markers (SNP) associated with a phenotype (disease) of interest.
- State-of-the art approach: Univariate tests of association between each of *p* markers and the phenotype.

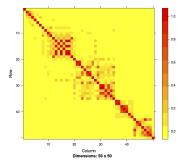


- $p \sim 10^6$ tests (genomic markers)
- statistical dependency between markers

(Image from: Ikram MK et al., PLoS Gen. 2010)

Linkage disequilibrium (LD)

- LD: the non-random association of alleles at two or more loci
- May be quantified by $r^2(j,j') = \operatorname{corr}(Z_j, Z_{j'})$, where
 - $Z_j = \mathbf{1}_{minor allele is present for SNP j}$
- LD is structured in **diagonal blocks**:



 r^2 coefficients for the first 50 SNP on chromosome 22 in Dalmasso *et al.*, *PLoS One*, 2008

This dependency is generally not accounted for in GWAS.

A block-wise approach for GWAS

Goal: detect blocks of adjacent SNPs associated with phenotype

- A three-step approach¹
 - Hierarchical clustering of the SNPs with adjacency constraint using the LD similarity
 - 2 Estimation of the optimal number of groups: Gap statistic
 - **3** Selection of the associated blocks: Group Lasso regression

Implemented in package BALD

Computational bottleneck

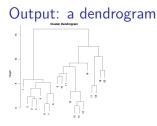
clustering step: steps 1... and 2!

¹Dehman, Ambroise, Neuvial BMC Bioinformatics 2015

Adjacency-constrained clustering

Inputs

- data matrix: genotypes of p SNPs
- similarity measure between features: LD between SNPs
- similarity measure between clusters of features: Ward



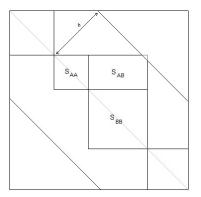
Algorithm

Starting from p clusters of individual features, iteratively merge of the two nearest clusters **among adjacent clusters**

Ward's distance between classes A and B

$$d(A, B) = \frac{p_A p_B}{p_A + p_B} \left(p_A^{-2} S_{AA} + p_B^{-2} S_{BB} - 2p_A^{-1} p_B^{-1} S_{AB} \right),$$

where $S_{IJ} = \sum_{i \in I, j \in J} LD(i, j).$



d(A, B) only depends of sums of LD within blocks

Time and space complexities

Package	Method	time	space
hclust rioja BALD	Without adjacency constraint Adj. c. with pre-calculation of LD Adj. c. w/o pre-calculation of LD	$\begin{array}{c}O(p^3)\\O(p^2)\\O(p^2)\\O(p^2)\end{array}$	$ \begin{array}{c} O(p^2)\\ O(p^2)\\ O(p)\\ \end{array} $

Improving space complexity

(at no price on time complexity)

- Adjacency constraint: from $O(p^3)$ to $O(p^2)$
- Without *pre-calculation* of all pairwise LD: from $O(p^2)$ to O(p)

Lower bound on time complexity: $O(p^2)$

• All pairwise LD need to be calculated.

Numerical experiments

HIV data

- Dalmasso et al., PLoS One, 2008
- 605 individuals, 300 000 SNP

Execution time for one run of the algorithm

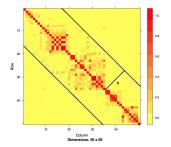
chromosome	22	1	whole genome
size	• • - •	23304	307851
time (hours)		3	538

Can we do faster?

A faster, approximate solution

A simplifying biological assumption

LD induces **short range** dependency compared to *p*:



- $LD(j,j') \sim 0$ when |j'-j| > h
- a $p \times h$ similarity matrix, with $h \ll p$

Only O(ph) **pairwise values of LD need to be** calculated

Are we done yet ?

LD coefficients can be pre-calculated and stored in memory $(p \times h)$... but the algorithm is still quadratic in p (in time)!

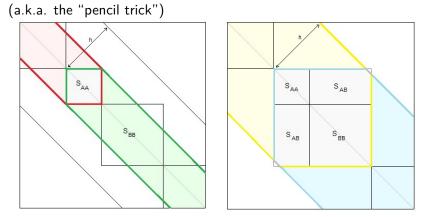
Two remaining challenges

p successive merging steps to be performed. For each of them:

1. sums of the form S_{IJ} must be calculated smartly

finding the next best merge is linear in p2. need an efficient way (ie o(p)) to store and retrieve candidate merges

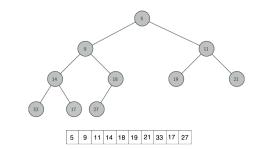
1- Pre-calculation of within-block sums



 \Rightarrow Two arrays of sizes $p \times h$ for storing the pencil sums.

2- Binary heaps to store merge candidates

- Each parent is smaller than its children
- Given a position *i*:
 - Parent $(i) = \lfloor i/2 \rfloor$
 - Left(i) = 2i
 - Right(i) = 2i + 1



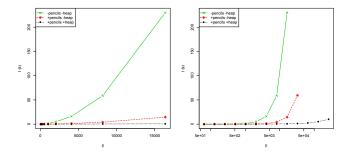
storage	retrieve min	insert	delete min
unordered array	O(p)	O(1)	O(p)
min-heap	O(1)	$O(\log(p))$	$O(\log(p))$

A quasilinear time implementation

- 1 band similarity matrix
- 2 pre-calculation of specific cumulative sums of LD
- **3** storing candidate merges using a binary heap
- 4 implementation of the binary heap in C

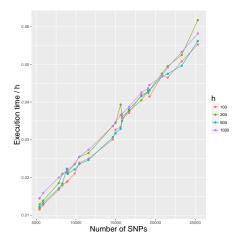
Time and space complexity: $O(p(\log(p) + h))$

Numerical experiments on synthetic data



Numerical experiments on real data

Linear execution time in p and h on real data



Conclusion and perspective

Summary

- Incorporating biological constraints can be useful
- Good tradeoff between time and space complexity

Perspective

- p-values on blocks (Suzuki & Shimodaira, package pvclust)
- Application to other problems (Hi-C ?)